% A simple example of the sum % of different sines functions. t=-2.*pi:0.01:2.*pi; a=-0.4.*sin(5.*t); b=0.3.*sin(2.*t); c=sin(t); d=sin(t./2); plot(a,'b'); axis([0 1250 -1 1]); title('f(1)=-0.4.*sin(5.*t)') disp('Press any key to continue') pause plot(b,'b'); axis([0 1250 -1 1]); title('f(2)=0.3.*sin(2.*t)') disp('Press any key to continue') pause plot(c,'b'); axis([0 1250 -2 2]); title('f(3)=sin(t)'); disp('Press any key to continue') pause plot(d,'b'); axis([0 1250 -2 2]); title('f(3)=sin(t)'); s=a+b+c; plot(s,'b'); axis([0 1250 -2 2]); title('Sum of functions: f(1)+f(2)+f(3)'); disp('Press any key to continue') pause subplot(511); plot(a,'b'); axis([0 1250 -1 1]); axis('off'); text(-190,0,'-0.4 sin(5t)'); title('Fourier Series'); subplot(512); plot(b,'b'); axis([0 1250 -1 1]); axis('off'); text(-190,0,'0.3 sin(3t)'); subplot(513); plot(c,'b'); axis([0 1250 -1 1]); axis('off'); text(-190,0,'sin(t)'); subplot(514); plot(d,'b'); axis([0 1250 -1 1]); axis('off'); text(-190,0,'sin(t/2)'); subplot(515); plot(s,'b'); axis([0 1250 -1.5 1.5]); axis('off'); text(-190,0,'Sum'); %"Complex and Chaotic Nonlinear Dynamics. % Advances in Economics and Finance, % Mathematics and Statistics" % T.Vialar, Springer 2009. % Copyright(c)