Thierry Vialar

Complex and Chaotic Nonlinear Dynamics

Advances in Economics and Finance, Mathematics and Statistics

Springer
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10</td>
<td>Examples of Dynamical System Resolution</td>
<td>41</td>
</tr>
<tr>
<td>1.10.1</td>
<td>A Stable System</td>
<td>41</td>
</tr>
<tr>
<td>1.10.2</td>
<td>An Unstable System with a Saddle Point</td>
<td>42</td>
</tr>
<tr>
<td>1.11</td>
<td>Typology of Second-Order Linear Systems</td>
<td>43</td>
</tr>
<tr>
<td>1.11.1</td>
<td>Eigenvalues Interpretation</td>
<td>44</td>
</tr>
<tr>
<td>1.11.2</td>
<td>Some Representations in the Phase-Plane</td>
<td>44</td>
</tr>
<tr>
<td>1.11.3</td>
<td>Behavior Summary of Second-Order Linear Systems</td>
<td>46</td>
</tr>
<tr>
<td>1.12</td>
<td>Examples of Nonlinear System Resolution</td>
<td>49</td>
</tr>
<tr>
<td>1.12.1</td>
<td>A (Bilinear) Nonlinear System and a Saddle-Point</td>
<td>49</td>
</tr>
<tr>
<td>1.12.2</td>
<td>Pitchfork Bifurcation</td>
<td>50</td>
</tr>
<tr>
<td>1.12.3</td>
<td>Supercritical Hopf Bifurcation</td>
<td>51</td>
</tr>
<tr>
<td>1.13</td>
<td>Poincaré–Bendixson Theorem</td>
<td>55</td>
</tr>
<tr>
<td>1.13.1</td>
<td>Bendixson Criterion</td>
<td>55</td>
</tr>
<tr>
<td>1.14</td>
<td>Center Manifold Theorem</td>
<td>56</td>
</tr>
<tr>
<td>1.15</td>
<td>Definitions of Chaos</td>
<td>57</td>
</tr>
<tr>
<td>1.16</td>
<td>Invariant Sets and Attractors</td>
<td>59</td>
</tr>
<tr>
<td>1.16.1</td>
<td>Definition of an Attractor</td>
<td>60</td>
</tr>
<tr>
<td>1.16.2</td>
<td>Strange Attractor</td>
<td>60</td>
</tr>
<tr>
<td>1.17</td>
<td>Some Nonlinear Dynamical Systems with Their Associated Attractors</td>
<td>62</td>
</tr>
<tr>
<td>1.18</td>
<td>Conservative and Dissipative Systems</td>
<td>70</td>
</tr>
<tr>
<td>1.19</td>
<td>Hamiltonian and Optimal Growth Model</td>
<td>71</td>
</tr>
<tr>
<td>1.19.1</td>
<td>The Optimal Growth Model with Infinite Horizon</td>
<td>72</td>
</tr>
<tr>
<td>1.20</td>
<td>Torus and Combination of Basic Frequencies</td>
<td>72</td>
</tr>
<tr>
<td>1.21</td>
<td>Quasiperiodic Route to Chaos (Ruelle Takens), and Landau T^n Tori</td>
<td>73</td>
</tr>
<tr>
<td>1.21.1</td>
<td>Description of Both Alternative Scenarios</td>
<td>73</td>
</tr>
<tr>
<td>1.21.2</td>
<td>Experimental Illustrations</td>
<td>75</td>
</tr>
<tr>
<td>1.21.3</td>
<td>Circle Map, Mode-Locking and Arnold Tongue</td>
<td>77</td>
</tr>
<tr>
<td>1.22</td>
<td>An Approach of KAM Theory: Invariant Torus and Chaos</td>
<td>80</td>
</tr>
<tr>
<td>1.22.1</td>
<td>KAM Torus: Irrational Rotation Number</td>
<td>83</td>
</tr>
<tr>
<td>1.23</td>
<td>Approach of Dynamical Systems by Means of Pendulums and Oscillators</td>
<td>85</td>
</tr>
<tr>
<td>1.24</td>
<td>Navier–Stokes Equations of Flows, Attractors and Invariant Measures</td>
<td>89</td>
</tr>
<tr>
<td>1.24.1</td>
<td>Navier–Stokes Equations: Basic Model</td>
<td>89</td>
</tr>
<tr>
<td>1.24.2</td>
<td>Navier–Stokes Dynamics: Invariant Ergodic Measures, Characteristic Exponents and Hilbert Spaces</td>
<td>91</td>
</tr>
<tr>
<td>1.25</td>
<td>The Three-Body Problem (H. Poincaré)</td>
<td>98</td>
</tr>
<tr>
<td>1.26</td>
<td>The Poincaré Section</td>
<td>100</td>
</tr>
<tr>
<td>1.26.1</td>
<td>Periodic Solution</td>
<td>101</td>
</tr>
<tr>
<td>1.26.2</td>
<td>Quasiperiodic Solution</td>
<td>102</td>
</tr>
<tr>
<td>1.26.3</td>
<td>Aperiodic Solution</td>
<td>103</td>
</tr>
<tr>
<td>1.26.4</td>
<td>Some Examples</td>
<td>103</td>
</tr>
</tbody>
</table>
1.27 From Topological Equivalence of Flows Towards the Poincaré Map .. 103
 1.27.1 Rotation Number, Orientation-Preserving Diffeomorphism and Topological Equivalence of Flows ... 103
 1.27.2 Poincaré Map (First Return Map) and Suspension 107
1.28 Lyapunov Exponent ... 109
 1.28.1 Description of the Principle 110
 1.28.2 Lyapunov Exponent Calculation 111
 1.28.3 Other Writing and Comment 111
 1.28.4 Interpretation of λ 112
1.29 Measure of Disorder: Entropy and Lyapunov Characteristic Exponent .. 113
1.30 Basic Concepts of Nonlinear Theory Illustrated by Unidimensional Logistic Equation: The Paradigm of a Nonlinear Model ... 114
 1.30.1 A Simple Dynamic Equation Which Contains a Subjacent “Deterministic Chaos” .. 115
 1.30.2 Fixed Points .. 115
 1.30.3 Logistic Orbit .. 119
 1.30.4 Sensitive Dependence on Initial Conditions 120
 1.30.5 Poincaré Sections of the Logistic Equation 122
 1.30.6 First-Return Map .. 123
 1.30.7 Solutions and Stability of the Model 124
 1.30.8 Stability Theorem Applied to Logistic Equation 124
 1.30.9 Generalization of the Stability of (Point) Solutions of the Quadratic Map: Generic Stability .. 125
 1.30.10 Bifurcation Diagram 125
 1.30.11 Monotonic or Oscillatory Solution, Stability Theorem 125
 1.30.12 Lyapunov Exponent Applied to the Logistic Map ... 126
1.31 Coupled Logistic Maps and Lee’s 126
 1.31.1 Period-Doubling, Bifurcations and Subharmonic Cascade .. 129
 1.31.2 Subharmonic Cascade, Accumulation Point 134
 1.31.3 Stable Cycles and Super-Stable Cycles 136
 1.31.4 Cobweb Diagram ... 136
 1.31.5 Bifurcation Measure or Feigenbaum Constant 141
 1.31.6 Iterative Functions of the Logistic Equation 142
1.32 The Bifurcation Paradox: The Final State is Predictable if the Transition is Fast Enough .. 143
 1.32.1 Probability of a Final State and Speed of Transition 143
 1.32.2 Variation of the Control Parameter of the Perturbated Logistic Equation .. 144
1.33 Hyperbolicity and Kolmogorov Capacity Dimension 146
 1.33.1 The Cantor Set ... 147
1.33.2 Finite System and Non-Intersection of Phase Trajectories ... 149
1.33.3 Hyperbolicity: Contradiction Between Dissipative System and Chaos Solved by the Capacity Dimension ... 149
1.33.4 Chaotic Attractor in a System of Dimension 1 152
1.33.5 Measure of the Complexity Level of Attractors 153

1.34 Nonlinearity and Hyperbolicity .. 153
1.34.1 Homoclinic Tangle and Smale Horseshoes Map 153
1.34.2 Smale Horseshoe: Structural Stability 154
1.34.3 Hyperbolic Set (Anosov Diffeomorphisms) 157
1.34.4 Symbolic Dynamics .. 158
1.34.5 Properties of the Smale Horseshoe Map 158
1.34.6 Folding and Unfolding Mechanism: Horseshoe and Symbolic Dynamics (Symbolic Coding) 160
1.34.7 Smale–Birkhoff Homoclinic Theorem 161
1.34.8 Hyperbolicity and Hartman–Grobman Theorem:
Hyperbolic Nonlinear Fixed Points 163
1.34.9 Hyperbolic Structure 168

1.35 Transitions and Routes to Chaos .. 182
1.35.1 Transition to Chaos Through Intermittency 182
1.35.2 Saddle Connections (“Blue Sky Catastrophes”) and Reminder About the Stability Boundaries 188

1.36 Temporal Correlation: Periodicity, Quasiperiodicity,
Aperiodicity ... 199
1.37 Power Spectral Density .. 201
1.37.1 Characterization of Dynamical Systems 201
1.37.2 Different Types of Spectra 203

1.38 Van der Pol Oscillator and Spectra 212
1.39 Reconstruction Theorems .. 220
1.39.1 Embedding, Whitney Theorem (1936) 220
1.39.2 Takens Theorem (1981): A Delay Embedding Theorem 222
1.39.3 (n, J)-Window Concept 225

2 Delay Model, SSA and Brownian Motion ... 227
2.1 Delay Model Applied to Logistic Equation (Medio) 228
2.1.1 Nonlinearities and Lags 228
2.1.2 Application to the Logistic Equation 230
2.2 Singular Spectrum Analysis .. 234
2.2.1 Singular Spectrum Analysis Principle:
 “Windowing”, Eigenvector and Projection 234
2.2.2 SSA Applied to the Logistic Equation with Delay Function 239
2.2.3 SSA Applied to a Financial Series (Cac40) 241
2.3 Fractional Brownian Motions ... 244
 2.3.1 Brownian Motion and Random Walk .. 244
 2.3.2 Capacity Dimension of a Fractional Brownian Motion 247
 2.3.3 Introduction to Persistence and Loops Concepts 250
 2.3.4 Comment on DS/TS Process and Brownian Motions 252

Part II Statistics of Complex and Chaotic Nonlinear Dynamics: Invariants and Rare Events

3 Nonlinear Processes and Discrimination .. 257
 3.1 Reminders: Statistics and Probability 257
 3.1.1 Random Experiment and Measurement 257
 3.1.2 Reduction Principles of Estimators: Invariance
 Principle, Unbias Principle, Asymptotic Principle 258
 3.1.3 Definition of a Process .. 259
 3.1.4 Probability Law, Cumulative Distribution
 Function, and Lebesgue Measure on \(\mathbb{R} \) 259
 3.1.5 Integral with Respect to a Measure 260
 3.1.6 Density and Lebesgue Measure Zero 261
 3.1.7 Random Variables and Transfer Formula 261
 3.1.8 Some Laws of Probabilities ... 262
 3.1.9 Autocovariance and Autocorrelation Functions 262
 3.2 The ARMA Processes: Stock Markets and Random Walk 262
 3.2.1 Reminders: ARMA Processes and Stationarity 263
 3.2.2 Dickey-Fuller Tests Applied to French Stock
 Index (Cac40) .. 266
 3.2.3 Correlogram Analysis of the Cac40 Sample 270
 3.2.4 Estimation of the Model .. 272
 3.3 Econometrics of Nonlinear Processes .. 274
 3.3.1 Stochastic Processes: Evolution of Linear
 Modeling Towards Nonlinear Modeling 274
 3.3.2 Non-Parametric Test of Nonlinearity: BDS Test
 of the Linearity Hypothesis Against an Unspecified Hypothesis 275
 3.4 The Non-Parametric Analysis of Nonlinear Models 277
 3.4.1 Parametric Analysis: Identification and Estimation
 of Parametric Models ... 277
 3.4.2 Non-Parametric Analysis ... 278
 3.4.3 Construction of a Non-Parametric Estimator
 of Density: From Windowing to Kernel Concept 278
 3.4.4 Estimator of Density and Conditional Expectation
 of Regression Between Two Variables 281
 3.4.5 Estimator of the Conditional Mode of a Dynamics 283
 3.4.6 A First Estimator of Dynamics by Regression 283
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.7</td>
<td>Estimator by Polynomial Regression</td>
<td>284</td>
</tr>
<tr>
<td>3.4.8</td>
<td>Estimator by the k-Nearest Neighbors Method: KNN</td>
<td>284</td>
</tr>
<tr>
<td>3.4.9</td>
<td>Estimator by the Radial Basis Function Method: RBF</td>
<td>285</td>
</tr>
<tr>
<td>3.4.10</td>
<td>A Neural Network Model: Multi-Layer Perceptron and Limit of Decision</td>
<td>286</td>
</tr>
<tr>
<td>3.5</td>
<td>First Statistical Tests of Validation of Chaotic Process Detection: Brock Test and LeBaron and Scheinkman Random Mixture Test</td>
<td>294</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Residual Test of Brock (1986)</td>
<td>295</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Scheinkman and LeBaron Random Mixture Test (1989): The Test Weakly Rejects the Hypothesis of Deterministic Chaos and Always Regards Financial Markets as Stochastic Processes</td>
<td>296</td>
</tr>
<tr>
<td>3.6</td>
<td>Long Memory Processes</td>
<td>296</td>
</tr>
<tr>
<td>3.6.1</td>
<td>ARFIMA Process</td>
<td>298</td>
</tr>
<tr>
<td>3.7</td>
<td>Processes Developed from ARFIMA Process</td>
<td>302</td>
</tr>
<tr>
<td>3.7.1</td>
<td>GARMA Processes: To Integrate the Persistent Periodic Behaviors of Long Memory</td>
<td>302</td>
</tr>
<tr>
<td>3.7.2</td>
<td>ARCH Processes Towards FIGARCH Processes: To Integrate the Persistence of Shocks in the Volatility of Long Memory Processes</td>
<td>303</td>
</tr>
<tr>
<td>3.8</td>
<td>Rejection of the “Random Walk” Hypothesis for Financial Markets: Lo and MacKinlay Test on the Variance of the NYSE (1988)</td>
<td>305</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Specification of the Test: Variances of the Increments for Their Ratio and Difference</td>
<td>306</td>
</tr>
<tr>
<td>3.9</td>
<td>Estimation of the Fractional Integration Parameter d or the Hurst Exponent H of an ARFIMA(p,d,q) Process</td>
<td>312</td>
</tr>
<tr>
<td>3.9.1</td>
<td>General Information About Long Memory (LRD) Estimations and Self-Similarity</td>
<td>312</td>
</tr>
<tr>
<td>3.10</td>
<td>Estimation of the Parameter d by the Spectral Methods of an ARFIMA Process</td>
<td>313</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Estimation of d by the Logarithm of the Power Spectrum: Estimator of Janacek (1982)</td>
<td>315</td>
</tr>
</tbody>
</table>

4 Statistical and Topological Invariants and Ergodicity | 329 |

4.1 The Measurement of a Deterministic Chaos Is Invariant in Time | 329 |

4.1.1 Ergodic Theory and Invariant Measurement Associated with a Dynamics | 329 |
4.1.2 The Measure of Probability of a Deterministic Chaotic System Is Invariant in Time 331

Part III Spectral and Time–Frequency Theories and Waveforms: Regularity and Singularity

5 Spectral and Time–Frequency Analyses and Signal Processing 343

5.1 Fourier Theory and Wavelets .. 343
5.1.1 Contribution of the Fourier Analysis to Regular and Stationary Series: An Approach of Linearities 343
5.1.2 Contribution of the Wavelet Analysis to Irregular and Non-Stationary Time Series: An Approach of Nonlinearities 346
5.1.3 A Statistical Theory of the Time–Frequency Analysis Remains to Be Developed 348

5.2 A Brief Typology of Information Transformations in Signal Analysis ... 350
5.2.1 Fourier, Wavelet and Hybrid Analyses 350

5.3 The Fourier Transform ... 350
5.3.1 Fourier Series and Fourier Transform 350
5.3.2 Interpretation of Fourier Coefficients 352

5.4 The Gabor Transform: A Stage Between the Short Term Fourier Transform and the Wavelet Transform 354
5.4.1 The Gabor Function ... 354
5.4.2 The Gabor Transform with a Sliding Window: The “Gabor Wavelet” 355

5.5 The Wavelet Transform ... 356
5.5.1 A Wavelet ψ Is a Function of Zero Average, i.e. Zero-Integral: $\int_{-\infty}^{+\infty} \psi(t) dt = 0$ 356
5.5.2 Wavelets and Variable-Window 357
5.5.3 The Wavelet Transform ... 357
5.5.4 Wavelet Transform and Reconstruction 361

5.6 Distinction of Different Window Mechanisms by Type of Transformation .. 367

5.7 Wavelet Transform of Function or Time Series 367
5.7.1 The Wavelets Identify the Variations of a Signal 367
5.7.2 Continuous Wavelet Transform 369
5.7.3 Discrete Wavelet Transform 370
5.7.4 Wavelet Models: “Gauss Pseudo-Wavelet”, Gauss-Derivative, Morlet and Sombrero 370

5.8 Aliasing and Sampling ... 373
5.9 Time-Scale Plane (b,a), Cone of Influence 374
5.9.1 Cone of Influence and Time-Scale Plane 374
5.9.2 Time–Frequency Plane ... 376
5.10 Heisenberg Boxes and Time–Frequency Plane ... 376
5.10.1 Concept of Time–Frequency Atom: Concept of Waveform Family 377
5.10.2 Energy Density, Probability Distribution and Heisenberg Boxes 378
5.10.3 Spectrogram, Scalogram and Energy Conservation 381
5.10.4 Reconstruction Formulas of Signal: Stable and Complete Representations 383

5.11 Wiener Theory and Time–Frequency Analysis ... 384
5.11.1 Introduction to the Correlogram–Periodogram Duality: Similarities and Resemblances Researches ... 384
5.11.2 Elements of Wiener Spectral Theory and Extensions 388

5.12 The Construction of Orthonormal Bases and Riesz Bases 399
5.12.1 Signal of Finite Energy .. 399
5.12.2 Reminders: Norms and Banach Spaces ... 399
5.12.3 Reminders: Inner Products and Hilbert Spaces 400
5.12.4 Orthonormal Basis ... 400
5.12.5 Riesz Basis, Dual Family and Biorthogonality 401
5.12.6 Orthogonal Projection .. 402
5.12.7 The Construction of Orthonormal Basis and Calculation of the "Detail" Coefficient on Dyadic Scale ... 402

5.13 Concept of Frames ... 403
5.13.1 The Fourier Transform in $L^2(\mathbb{R})$.. 403
5.13.2 Frames ... 405
5.13.3 Tiling of the Time–Frequency Plane by Fourier and Wavelets Bases 408

5.14 Linear and Nonlinear Approximations of a Signal by Projection on an Orthonormal Basis ... 409
5.14.1 General Framework of the Linear Approximation and Karhunen–Loève Optimal Basis ... 409
5.14.2 Nonlinear Approximation and Adaptive Basis Dependent on the Signal: Regularity and Singularity .. 410
5.14.3 Donoho and Johnstone Nonlinear Estimation: Algorithm with Threshold ... 417
5.14.4 Nonlinear Estimators are More Efficient to Minimize the Bayesian Risk: Optimization by Minimax ... 418
5.14.5 Approximation by the "Matching Pursuit": A General Presentation 420
5.14.6 Comparison of Best Bases and Matching Pursuits 426

5.15 The Multiresolution Analysis Notion .. 427
5.15.1 (Quadratic) Conjugate Mirror Filter ... 427
5.15.2 Multiresolution Analysis .. 428
5.16 Singularity and Regularity of a Time Series:
Self-Similarities, Multifractals and Wavelets 432
5.16.1 Lipschitz Exponent (or Hölder Exponent):
Measurement of Regularity and Singularity by
Means of the Hölder Functions $\alpha(t)$ 432
5.16.2 n Wavelet Vanishing Moments and Multiscale
Differential Operator of Order n 434
5.16.3 Regularity Measures by Wavelets 435
5.16.4 Detection of Singularities: The Maxima of the
Modulus of Wavelet Transform are Associated
with the Singularities 436
5.16.5 Self-Similarities, Wavelets and Fractals 437
5.16.6 Spectrum of Singularity: Multifractals, Fractional
Brownian Motions and Wavelets 440
5.17 The Continuous Wavelet Transform 447
5.17.1 Application to a Stock Exchange Index: Cac40 447
5.18 Wigner–Ville Density: Representation of the Fourier
and Wavelet Atoms in the Time–Frequency Plane 456
5.18.1 Cohen’s Class Distributions and Kernels
of Convolution .. 459
5.19 Introduction to the Polyspectral Analysis
(for the Nonlinearities) .. 462
5.19.1 Polyspectral Analysis Definition for Random
Processes with Zero-Average 463
5.19.2 Polyspectra and Nonlinearities 464
5.20 Polyspectral and Wavelet Bicoherences 466
5.20.1 A New Tool of Turbulence Analysis: Wavelet
Bicoherence .. 466
5.20.2 Compared Bicoherences: Fourier and Wavelet 474
5.21 Arguments in Favor of Wavelet Analysis Compared
to Fourier Analysis .. 475
5.21.1 Signal Deformation by Diffusion of Peaks,
Discontinuities and Errors in the Fourier Transform ... 475
5.21.2 Wavelets are Better Adapted to the Signal
by Respecting Discontinuities and Peaks, Because
they Identify the Variations 476
5.21.3 Wavelets are Adapted to Non-Stationary Signals 477
5.21.4 Signal Energy is Constant in the Wavelet Transform ... 477
5.21.5 Wavelets Facilitate the Signal "Denoizing" 477
5.21.6 Wavelets are Less Selective in Frequency
than the Fourier Transform 477
5.21.7 The Hybrid Transformations Allow an Optimal
Adaptation to Transitory Complex Signals 478
6 The Atomic Decompositions of Signals
6.1 A Hybrid Transformation: Evolution of the “Matching Pursuit” Towards the Mallat and Zhang Version
6.1.1 Construction of Sinusoid and Wavelet Packets
6.1.2 Reminders About the Time–Frequency Atoms
6.1.3 Reminders About the Matching Pursuit
6.1.4 Improvement of the Algorithm
6.1.5 Mallat and Zhang Version of Matching Pursuit with Dictionaries of Time–Frequency Atoms
6.2 Applications of the Different Versions of the “Matching Pursuit” to a Stock-Exchange Index: Cac40
6.2.1 Matching Pursuit: Atomic Decomposition with Fourier Dictionary
6.2.2 Matching Pursuit: Atomic Decomposition with Wavelet Dictionary
6.3.1 The Dirac Function Would Allow to Distinguish Isolated and Intense Explosions: Internal Shocks and External Shocks
6.4 Comments About Time–Frequency Analysis

Part IV Economic Growth, Instability and Nonlinearity
7 Evolution of Economic Growth Models
7.1 Growth and Distribution in the Neoclassical Framework
7.1.1 Aggregates and National Income
7.1.2 Neo-Classical Production Function and Diminishing Returns
7.1.3 Conditions of the Optimal Combination of the Factors K and L
7.1.4 Optimal Combination of Factors, and Tendency Towards a Zero Profit in the Long Term
7.1.5 The Ground Rent and the Ricardo Growth Model
7.1.6 The Expansion Path and the Limitation of the Nominal National Income Growth
7.1.7 Stationary Per Capita Income of the Solow Model in the Long Term
7.2 Linear Technical Relations Outside the Neo-Classical Theory Framework of the Distribution: Von Neumann Model of Semi-Stationary Growth (1946) .. 521
7.2.1 Primacy of the Organization of “Technical Processes” .. 521
7.2.2 Presentation of the Von Neumann Model 521
7.2.3 The Optimal Path and the Golden Rule in the Von Neumann Model .. 525
7.2.4 Comments About Von Neumann and Solow Models . . 528

7.3 Stability, Stationarity and Diminishing Returns of the Capital: The Solow Model (1956) 531
7.3.1 Diminishing Returns and Stationarity of the Per Capita Product ... 531
7.3.2 The Reference Model 531
7.3.3 Introduction of the Technological Progress into the Solow Model and Balanced Growth Path 539
7.3.4 Evolution of the Solow Model and the Neo-Classical Models .. 540

7.4 Introduction of Externalities, and Instability: Endogenous Growth Theory ... 543
7.4.1 Interrupted Growth in the Solow Model and Long-Term Stationarity .. 543
7.4.2 Introduction of Positive Externalities 544
7.4.3 Endogenous Growth Without Externality 548

7.5 Incentive to the Research by Profit Sharing: The Romer Model (1986–1990) 548
7.5.1 Basic Components of the Romer Model 549
7.5.2 Imperfect Competition, Externalities and R&D Optimality: The Reconciliation in the Romer Model ... 553
7.5.3 Romer Model and Transfer of Technology Between Countries ... 555

7.6 Nonlinearities and Effect of Economic Policies in the Endogenous Growth Models 558
7.6.1 AK Model: The Limit Case of Solow Model for $\alpha = 1$... 558
7.6.2 Linearities and Endogenous Growth 559
7.6.3 Externalities and AK Models 561
7.6.4 Nonlinearities and Effect of Economic Policies in Endogenous Growth Models: Transitory or Permanent Effects ... 563

7.7 Basin of Instability and Saddle-Point: Optimal Growth Model of Ramsey without Technological Progress 563
7.7.1 Intertemporal Choices and Utility Function 563
7.7.2 The Production Function 564
7.7.3 Mechanism of Optimization, and Trajectories 566
7.8 Basin of Instability and Saddle-Point: Optimal Growth Model of Cass Koopmans Ramsey with Technological Progress . 569
7.8.1 Enterprises and Production Function . 569
7.8.2 Households and Maximization of the Utility Function Under the Budget Constraint . 570
7.8.3 Dynamics and Balanced Growth Path . 573
7.8.4 Comments About the Trajectories and Maximization of the Level of Consumption . 578
7.8.5 Equilibria and Instability of Solutions . 579
7.8.6 Endogenous Growth Without Externality, and Saddle Point . 580

7.9 Day Model (1982): Logistic Function, Periodic and Chaotic Behaviors . 581
7.9.1 The Model . 581
7.9.2 From Dynamics of Capital Towards Logistic Function . 582
7.9.3 Periodic and Chaotic Solutions of the Dynamics of k . 583

7.10 Day–Lin Model (1992): Imperfect Information and Strange Attractor . 583
7.10.1 Imperfect Information, Price Uncertainty and Adaptive Expectations . 584
7.10.2 Chaotic Growth and Intertemporal Non-Optimality . 586

7.11 The Instability of Stock Markets, and Random Processes: Model of Portfolio Choice . 588
7.11.1 Dynamics of Accumulation of k and m . 589
7.11.2 The Solution is a Saddle-Point . 590

7.12 Goodwin’s Cyclical Growth Model . 592

7.13 Catastrophe Theory and Kaldor Model . 594

7.14 Overlapping Generations Models: Cycles, Chaos . 597
7.14.2 Grandmont (1985) . 599

7.15 Optimal Growth Models: Convergence, Cycles, Chaos . 600
7.15.1 Boldrin–Woodford (1990) . 601
7.15.2 Turnpike Theorem (and Anti-Turnpike Theorem) . 602
7.15.3 Benhabib–Nishimura Optimal Growth Model (1979): Equilibrium Limit Cycle . 603

7.16 Nonlinearities and Cycle Theory . 605
7.16.1 Nonlinearities and Chaos Theory . 605
7.16.2 Real Business Cycle Theory and Concept of Shock . 606

8 Efficiency and Random Walk . 609
8.1 Market Efficiency and Random Walk: Stock Market Growth and Economic Growth . 609
8.1.1 Stock Exchange: Perfect Competition Market . 609
8.1.2 Stock Exchange: Advanced Indicator of Economic Activity . 610
8.1.3 Indicators of Value Creation ... 612
8.1.4 Corporate Governance: Market Imperfection Factors 613
8.1.5 Modigliani–Miller Theorem: Neutrality of Finance on Market Perfection ... 614
8.1.6 Role of Expectations on Equilibria and Markets: Expectation Concepts .. 615
8.1.7 The Lucas Critique of Rational Expectations and the Superneutrality of Economic Policies 619
8.1.8 Rational Bubbles and Sunspots Models 623
8.1.9 Efficiency and Instability of Financial Markets: A Non-Probabilisable Universe 628
8.1.10 The Question of the Imperfection, Inefficiency and Non-Random Walk of Stock Markets 631

Conclusion ... 633

Postface ... 637

A Mathematics .. 641
 A.1 Relations, Metrics, Topological Structures 641
 A.1.1 Relations and Diffeomorphisms 643
 A.1.2 Metric Spaces and Topological Spaces 646
 A.2 PreHilbert, Hilbert and Banach Spaces 655
 A.2.1 Normed Spaces .. 655
 A.2.2 PreHilbert Spaces .. 655
 A.2.3 Banach Spaces and Hilbert Spaces 656
 A.2.4 Differentiable Operators .. 657
 A.2.5 Banach Fixed-Point Theorem 657
 A.2.6 Differential and Integral Operators 658
 A.3 Complex Number Field, Holomorphic Functions and Singularities ... 658
 A.3.1 Complex Number .. 660
 A.3.2 Construction of the Field C of Complex Numbers 661
 A.3.3 Geometrical Representation of Complex Numbers 662
 A.3.4 Operations in the Gauss Complex Plane 663
 A.3.5 Algebraic Closure of C .. 664
 A.3.6 Alembert–Gauss Theorem ... 665
 A.3.7 Exponential, Logarithm in C 665
 A.3.8 Others Properties of C, and Topology Theorem of C 666
 A.3.9 Riemann Sphere (Compactification) 666
 A.3.10 Holomorphic Function, Cauchi–Riemann Conditions and Harmonic Function 667
 A.3.11 Singularity of Holomorphic Functions, Laurent Series and Meromorphic Function 670
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.4</td>
<td>Surfaces and Manifolds</td>
<td>673</td>
</tr>
<tr>
<td>A.4.1</td>
<td>Closed Surfaces, Surfaces with Boundary</td>
<td>673</td>
</tr>
<tr>
<td>A.4.2</td>
<td>Classification of Closed Surfaces</td>
<td>676</td>
</tr>
<tr>
<td>A.4.3</td>
<td>Orientability and Topological Invariance</td>
<td>678</td>
</tr>
<tr>
<td>A.4.4</td>
<td>Connectivity Number</td>
<td>679</td>
</tr>
<tr>
<td>A.4.5</td>
<td>Riemann Surfaces</td>
<td>679</td>
</tr>
<tr>
<td>A.4.6</td>
<td>Manifolds and Differentiable Topology</td>
<td>681</td>
</tr>
<tr>
<td>A.5</td>
<td>Topology</td>
<td>683</td>
</tr>
<tr>
<td>A.6</td>
<td>Geometry and Axioms</td>
<td>685</td>
</tr>
<tr>
<td>A.6.1</td>
<td>Absolute Geometry</td>
<td>685</td>
</tr>
<tr>
<td>A.6.2</td>
<td>Euclidean and Non-Euclidean Metrics</td>
<td>687</td>
</tr>
<tr>
<td>A.6.3</td>
<td>Affine and Projective Planes</td>
<td>691</td>
</tr>
<tr>
<td>A.6.4</td>
<td>Projective Metric</td>
<td>693</td>
</tr>
<tr>
<td>A.6.5</td>
<td>Order and Orientation</td>
<td>693</td>
</tr>
<tr>
<td>A.7</td>
<td>Series Expansions</td>
<td>696</td>
</tr>
<tr>
<td>A.7.1</td>
<td>Taylor Polynomials and Remainders</td>
<td>696</td>
</tr>
<tr>
<td>A.7.2</td>
<td>Applications to Local Extrema</td>
<td>698</td>
</tr>
<tr>
<td>A.7.3</td>
<td>Taylor Series</td>
<td>698</td>
</tr>
<tr>
<td>A.7.4</td>
<td>Analytic Functions</td>
<td>699</td>
</tr>
<tr>
<td>A.7.5</td>
<td>Binomial Series</td>
<td>700</td>
</tr>
<tr>
<td>A.8</td>
<td>Distribution Theory</td>
<td>701</td>
</tr>
<tr>
<td>A.8.1</td>
<td>Derivation of Distributions</td>
<td>703</td>
</tr>
<tr>
<td>A.8.2</td>
<td>Multiplication</td>
<td>703</td>
</tr>
<tr>
<td>A.8.3</td>
<td>Support of Distributions</td>
<td>703</td>
</tr>
<tr>
<td>A.8.4</td>
<td>Convolution of Distributions</td>
<td>704</td>
</tr>
<tr>
<td>A.8.5</td>
<td>Applications to Partial Differential Equations with Constant Coefficients</td>
<td>704</td>
</tr>
<tr>
<td>A.8.6</td>
<td>Use of Elementary Solutions</td>
<td>705</td>
</tr>
<tr>
<td>A.9</td>
<td>Approximation Theory</td>
<td>706</td>
</tr>
<tr>
<td>A.9.1</td>
<td>Best Approximations</td>
<td>707</td>
</tr>
<tr>
<td>A.10</td>
<td>Interpolation Theory</td>
<td>709</td>
</tr>
<tr>
<td>A.10.1</td>
<td>Lagrange Method</td>
<td>709</td>
</tr>
<tr>
<td>A.10.2</td>
<td>Newton–Gregory method</td>
<td>709</td>
</tr>
<tr>
<td>A.10.3</td>
<td>Approximation by Interpolation Polynomials</td>
<td>710</td>
</tr>
<tr>
<td>A.11</td>
<td>Numerical Resolution of Equations</td>
<td>711</td>
</tr>
<tr>
<td>A.11.1</td>
<td>Simple Iterative Methods</td>
<td>711</td>
</tr>
<tr>
<td>A.11.2</td>
<td>Newton–Raphson Method</td>
<td>711</td>
</tr>
<tr>
<td>A.11.3</td>
<td>Linear Interpolation Method (Regula Falsi)</td>
<td>712</td>
</tr>
<tr>
<td>A.11.4</td>
<td>Horner's Schema</td>
<td>712</td>
</tr>
<tr>
<td>A.11.5</td>
<td>Graeffe Method</td>
<td>713</td>
</tr>
<tr>
<td>A.12</td>
<td>Second-Order Differential Equations</td>
<td>713</td>
</tr>
<tr>
<td>A.12.1</td>
<td>General Resolution of Linear Differential Equations of Second-Order</td>
<td>714</td>
</tr>
<tr>
<td>A.12.2</td>
<td>Resolution of Linear Homogeneous Equations</td>
<td>714</td>
</tr>
<tr>
<td>A.12.3</td>
<td>Particular Solution of a Non-Homogeneous Equation</td>
<td>715</td>
</tr>
</tbody>
</table>
A.12.4 Linear Differential Equations of Second-Order with Constant Coefficients 715

A.13 Other Reminders ... 717
A.13.1 Basic Reminders in Mathematics and Statistics 717

Bibliography .. 723

Index ... 733