Thierry Vialar

Complex and Chaotic Nonlinear Dynamics

Advances in Economics and Finance, Mathematics and Statistics

Contents

Int	roducti	on		1
Pai	rt I Inv	estigatio	on Methods of Complex and Chaotic Nonlinear Dynamics	6
1	Nonlii	near Th	eory	15
	1.1		ical Systems	18
		1.1.1	Differential Equation and Difference Equation	18
		1.1.2	Solution-Trajectory of a Dynamical System	18
	1.2	Autono	mous and Non-Autonomous Flows, Fixed-Point	20
		1.2.1	Definition of a Flow	20
		1.2.2	Continuous and Discrete System	21
		1.2.3	Definition of a Fixed Point and a Stable Fixed Point	21
	1.3	Introdu	ction to the Resolution of Nonlinear Dynamical Systems	22
		1.3.1	Linearization of Nonlinear Models	22
		1.3.2	Linearization Generalized to State Space Models	23
	1.4	Resolu	tion of the Zero-Input Form	24
		1.4.1	Solution of the General State-Space Form	25
	1.5	Existen	ce and Uniqueness of Differential System Solutions	26
		1.5.1	Lipschitz Condition	26
	1.6	Stabilit	y of a Dynamical System	27
	1.7	Floque	t Theory	28
		1.7.1	Stability, Floquet Matrix and Eigenvalues	28
		1.7.2	Transitions Stemming from the Linear Stability	
			Loss in Dissipative Systems	32
	1.8	The Bi	furcation Concept	33
		1.8.1	Codimension-1 Bifurcations of Fixed Points	33
		1.8.2	Subcritical Bifurcations of Fixed Points	35
		1.8.3	Codimension-1 Bifurcations of Periodic Orbits	35
	1.9	Hopf B	furcation	36
		1.9.1	Codimension-1 Hopf Bifurcation	36
		1.9.2	Cusp and Generalized Hopf Bifurcations	39

1.10	Exampl	es of Dynamical System Resolution	41
	1.10.1	A Stable System	41
	1.10.2	An Unstable System with a Saddle Point	42
1.11	Typolog	y of Second-Order Linear Systems	43
	1.11.1	Eigenvalues Interpretation	44
	1.11.2	Some Representations in the Phase-Plane	44
	1.11.3	Behavior Summary of Second-Order Linear Systems	46
1.12		es of Nonlinear System Resolution	49
	1.12.1	A (Bilinear) Nonlinear System and a Saddle-Point	49
	1.12.2	Pitchfork Bifurcation	50
	1.12.3	Supercritical Hopf Bifurcation	51
1.13		é–Bendixson Theorem	55
	1.13.1	Bendixson Criterion	55
1.14	Center]	Manifold Theorem	56
1.15		ons of Chaos	57
1.16		t Sets and Attractors	59
	1.16.1	Definition of an Attractor	60
	1.16.2	Strange Attractor	60
1.17	Some N	Ionlinear Dynamical Systems with Their Associated	
		Drs	62
1.18		vative and Dissipative Systems	70
1.19		onian and Optimal Growth Model	71
	1.19.1	The Optimal Growth Model with Infinite Horizon	72
1.20		nd Combination of Basic Frequencies	72
1.21		eriodic Route to Chaos (Ruelle Takens),	
	~ .	\mathbf{r}^n Tori	73
	1.21.1	Description of Both Alternative Scenarios	73
	1.21.2	-	75
	1.21.3	Circle Map, Mode-Locking and Arnold Tongue	77
1.22		broach of KAM Theory: Invariant Torus and Chaos	80
	1.22.1	KAM Torus: Irrational Rotation Number	83
1.23	Approa	ch of Dynamical Systems by Means of Pendulums	
		cillators	85
1.24		Stokes Equations of Flows, Attractors and Invariant	
		es	89
	1.24.1	Navier-Stokes Equations: Basic Model	89
	1.24.2	Navier–Stokes Dynamics: Invariant Ergodic	
		Measures, Characteristic Exponents	
		and Hilbert Spaces	91
1.25	The The	ree-Body Problem (H. Poincaré)	98
1.26		ncaré Section	
	1.26.1	Periodic Solution	
	1.26.2	Quasiperiodic Solution	
	1.26.3	Aperiodic Solution	
	1.26.4	Some Examples	

1.27	From To	pological Equivalence of Flows Towards
	the Poin	caré Map 103
	1.27.1	Rotation Number, Orientation-Preserving
		Diffeomorphism and Topological Equivalence
		of Flows
	1.27.2	Poincaré Map (First Return Map) and Suspension 107
1.28	Lyapunc	ov Exponent
	1.28.1	Description of the Principle
	1.28.2	Lyapunov Exponent Calculation
	1.28.3	Other Writing and Comment
	1.28.4	Interpretation of λ
1.29		of Disorder: Entropy and Lyapunov Characteristic
		nt
1.30		oncepts of Nonlinear Theory Illustrated by
		ensional Logistic Equation: The Paradigm
		nlinear Model
	1.30.1	A Simple Dynamic Equation Which Contains
		a Subjacent "Deterministic Chaos" 115
	1.30.2	Fixed Points
	1.30.3	Logistic Orbit
	1.30.4	Sensitive Dependence on Initial Conditions
	1.30.5	Poincaré Sections of the Logistic Equation 122
	1.30.6	First-Return Map 123
	1.30.7	Solutions and Stability of the Model 124
	1.30.8	Stability Theorem Applied to Logistic Equation 124
	1.30.9	Generalization of the Stability of (Point) Solutions
		of the Quadratic Map: Generic Stability 125
	1.30.10	Bifurcation Diagram 125
	1.30.11	Monotonic or Oscillatory Solution, Stability Theorem 125
	1.30.12	Lyapunov Exponent Applied to the Logistic Map 126
1.31	Coupled	Logistic Maps and Lce's 126
	1.31.1	Period-Doubling, Bifurcations
		and Subharmonic Cascade 129
	1.31.2	Subharmonic Cascade, Accumulation Point 134
	1.31.3	Stable Cycles and Super-Stable Cycles 136
	1.31.4	Cobweb Diagram 136
	1.31.5	Bifurcation Measure or Feigenbaum Constant 141
	1.31.6	Iterative Functions of the Logistic Equation 142
1.32		urcation Paradox: The Final State is Predictable
	if the Tr	ansition is Fast Enough 143
	1.32.1	Probability of a Final State and Speed of Transition 143
	1.32.2	Variation of the Control Parameter
		of the Perturbated Logistic Equation 144
1.33	Hyperb	olicity and Kolmogorov Capacity Dimension
	1.33.1	The Cantor Set

	1.33.2	Finite System and Non-Intersection	
		of Phase Trajectories	149
	1.33.3	Hyperbolicity: Contradiction Between Dissipative	
		System and Chaos Solved by the Capacity Dimension	149
	1.33.4	Chaotic Attractor in a System of Dimension 1	152
	1.33.5	Measure of the Complexity Level of Attractors	153
1.34	Nonlinea	arity and Hyperbolicity	153
	1.34.1	Homoclinic Tangle and Smale Horseshoes Map	
	1.34.2	Smale Horseshoe: Structural Stability	
	1.34.3	Hyperbolic Set (Anosov Diffeomorphisms)	157
	1.34.4	Symbolic Dynamics	158
	1.34.5	Properties of the Smale Horseshoe Map	158
	1.34.6	Folding and Unfolding Mechanism: Horseshoe	
		and Symbolic Dynamics (Symbolic Coding)	160
	1.34.7	Smale–Birkhoff Homoclinic Theorem	161
	1.34.8	Hyperbolicity and Hartman–Grobman Theorem:	
		Hyperbolic Nonlinear Fixed Points	163
	1.34.9	Hyperbolic Structure	168
	1.34.10	Homoclinic Orbit and Perturbation: Melnikov	
	1.34.11	Shilnikov Phenomenon: Homoclinic Orbit in $\mathbb{R}^3 \dots$	
1.35	Transitic	ons and Routes to Chaos	
	1.35.1	Transition to Chaos Through Intermittency	182
	1.35.2	Saddle Connections ("Blue Sky Catastrophes")	
		and Reminder About the Stability Boundaries	188
1.36		al Correlation: Periodicity, Quasiperiodicity,	
	-	icity	
1.37	•	pectral Density	
	1.37.1	Characterization of Dynamical Systems	
	1.37.2	Different Types of Spectra	
1.38		Pol Oscillator and Spectra	
1.39		ruction Theorems	
	1.39.1	Embedding, Whitney Theorem (1936)	220
	1.39.2	Takens Theorem (1981): A Delay	
		Embedding Theorem	
	1.39.3	(n, J)-Window Concept	225
Dolov	Model S	SA and Brownian Motion	1 17
2.1		odel Applied to Logistic Equation (Medio)	
2.1	2.1.1	Nonlinearities and Lags	
	2.1.2	Application to the Logistic Equation	
2.2		Spectrum Analysis	
2.2	2.2.1	Singular Spectrum Analysis Principle:	2.)4
	1 . سه . سه	"Windowing", Eigenvector and Projection	721
	2.2.2	SSA Applied to the Logistic Equation with Delay	LJ4
		Function	220
			ムリフ

2

2.3.2 Capacity Dimension of a Fractional Brownian Motion2.3.3 Introduction to Persistence and Loops Concepts		2.2.3	SSA Applied to a Financial Series (Cac40)
2.3.2 Capacity Dimension of a Fractional Brownian Motion2.3.3 Introduction to Persistence and Loops Concepts	2.3	Fractior	al Brownian Motions 244
2.3.3 Introduction to Persistence and Loops Concepts		2.3.1	Brownian Motion and Random Walk 244
		2.3.2	Capacity Dimension of a Fractional Brownian Motion 247
2.3.4 Comment on DS/TS Process and Brownian Motions		2.3.3	Introduction to Persistence and Loops Concepts 250
		2.3.4	Comment on DS/TS Process and Brownian Motions 252

Part II Statistics of Complex and Chaotic Nonlinear Dynamics: Invariants and Rare Events

3	Nonli	near Pro	cesses and Discrimination
	3.1	Remino	ders: Statistics and Probability
		3.1.1	Random Experiment and Measurement
		3.1.2	Reduction Principles of Estimators: Invariance
			Principle, Unbias Principle, Asymptotic Principle 258
		3.1.3	Definition of a Process 259
		3.1.4	Probability Law, Cumulative Distribution
			Function, and Lebesgue Measure on \mathbb{R}
		3.1.5	Integral with Respect to a Measure
		3.1.6	Density and Lebesgue Measure Zero
		3.1.7	Random Variables and Transfer Formula
		3.1.8	Some Laws of Probabilities
		3.1.9	Autocovariance and Autocorrelation Functions
	3.2	The AF	RMA Processes: Stock Markets and Random Walk 262
		3.2.1	Reminders: ARMA Processes and Stationarity
		3.2.2	Dickey-Fuller Tests Applied to French Stock
			Index (Cac40)
		3.2.3	Correlogram Analysis of the Cac40 Sample
		3.2.4	Estimation of the Model 272
	3.3	Econor	netrics of Nonlinear Processes
		3.3.1	Stochastic Processes: Evolution of Linear
			Modeling Towards Nonlinear Modeling
		3.3.2	Non-Parametric Test of Nonlinearity: BDS Test
			of the Linearity Hypothesis Against an
			Unspecified Hypothesis 275
	3.4	The No	on-Parametric Analysis of Nonlinear Models
		3.4.1	Parametric Analysis: Identification and Estimation
			of Parametric Models 277
		3.4.2	Non-Parametric Analysis 278
		3.4.3	Construction of a Non-Parametric Estimator
			of Density: From Windowing to Kernel Concept 278
		3.4.4	Estimator of Density and Conditional Expectation
			of Regression Between Two Variables
		3.4.5	Estimator of the Conditional Mode of a Dynamics 283
		3.4.6	A First Estimator of Dynamics by Regression

.

	3.4.7	Estimator by Polynomial Regression
	3.4.8	Estimator by the k-Nearest Neighbors Method: KNN 284
	3.4.9	Estimator by the Radial Basis Function Method: RBF 285
	3.4.10	A Neural Network Model: Multi-Layer
		Perceptron and Limit of Decision
3.5	First St	atistical Tests of Validation of Chaotic Process
	Detecti	on: Brock Test and LeBaron and Scheinkman
	Randor	m Mixture Test
	3.5.1	Residual Test of Brock (1986) 295
	3.5.2	Scheinkman and LeBaron Random Mixture Test
		(1989): The Test Weakly Rejects the Hypothesis
		of Deterministic Chaos and Always Regards
		Financial Markets as Stochastic Processes
3.6	Long N	Iemory Processes
	3.6.1	ARFIMA Process 298
3.7	Process	ses Developed from ARFIMA Process
	3.7.1	GARMA Processes: To Integrate the Persistent
		Periodic Behaviors of Long Memory 302
	3.7.2	ARCH Processes Towards FIGARCH Processes:
		To Integrate the Persistence of Shocks
		in the Volatility of Long Memory Processes
3.8		on of the "Random Walk" Hypothesis for Financial
		s: Lo and MacKinlay Test on the Variance
		VYSE (1988)
	3.8.1	Specification of the Test: Variances
2.0	T	of the Increments for Their Ratio and Difference 306
3.9		ion of the Fractional Integration Parameter d
		Hurst Exponent H of an ARFIMA(p,d,q) Process
	3.9.1	General Information About Long Memory (LRD)
3.10	Entiment	Estimations and Self-Similarity
5.10		ion of the Parameter d by the Spectral Methods
	3.10.1	RFIMA Process
	5.10.1	Estimation of d Based on the Form of the Spectral
		Density: Regression Method of the Geweke
	3.10.2	and Porter-Hudak Estimator (GPH: 1983)
	5.10,2	Estimation of d by the Logarithm of the Power
3.11	Abry V	Spectrum: Estimator of Janacek (1982)
./.11	Wavelet	Analysis of Long Memory Processes: An Effective
	Approa	ch of Scale Phenomena
	rippioa	
Statis	tical and	Topological Invariants and Ergodicity
4.1	The Me	asurement of a Deterministic Chaos Is Invariant in Time
	4.1.1	Ergodic Theory and Invariant Measurement
		Associated with a Dynamics

4

4.1.2	The Measure of Probability of a Deterministic				
	Chaotic System Is Invariant in Time	31			

Part III Spectral and Time–Frequency Theories and Waveforms: Regularity and Singularity

5	Spectr	al and Ti	ime-Frequency Analyses and Signal Processing	. 343
	5.1	Fourier 1	Theory and Wavelets	. 343
		5.1.1	Contribution of the Fourier Analysis to Regular	
			and Stationary Series: An Approach of Linearities	343
		5.1.2	Contribution of the Wavelet Analysis to Irregular	
			and Non-Stationary Time Series: An Approach	
			of Nonlinearities	, 346
		5.1.3	A Statistical Theory of the Time–Frequency	
			Analysis Remains to Be Developed	. 348
	5.2	A Brief	Typology of Information Transformations in Signal	
		Analysis	·	
		5.2.1	Fourier, Wavelet and Hybrid Analyses	. 350
	5.3	The Fou	rier Transform	
		5.3.1	Fourier Series and Fourier Transform	. 350
		5.3.2	Interpretation of Fourier Coefficients	. 352
	5.4		oor Transform: A Stage Between the Short Term	
		Fourier	Transform and the Wavelet Transform	. 354
		5.4.1	The Gabor Function	. 354
		5.4.2	The Gabor Transform with a Sliding Window:	
			The "Gabor Wavelet"	. 355
	5.5	The Way	velet Transform	. 356
		5.5.1	A Wavelet ψ Is a Function of Zero Average,	
			i.e. Zero-Integral: $\int_{-\infty}^{+\infty} \psi(t) dt = 0$. 356
		5.5.2	Wavelets and Variable-Window	. 357
		5.5.3	The Wavelet Transform	. 357
		5.5.4	Wavelet Transform and Reconstruction	. 361
	5.6		on of Different Window Mechanisms by Type	
			formation	
	5.7	Wavelet	Transform of Function or Time Series	
		5.7.1	The Wavelets Identify the Variations of a Signal	
		5.7.2	Continuous Wavelet Transform	
		5.7.3	Discrete Wavelet Transform	. 370
		5.7.4	Wavelet Models: "Gauss Pseudo-Wavelet",	
			Gauss-Derivative, Morlet and Sombrero	. 370
	5.8	Aliasing	and Sampling	. 373
	5.9	Time-Sc	cale Plane (b,a), Cone of Influence	. 374
		5.9.1	Cone of Influence and Time-Scale Plane	
		5.9.2	Time–Frequency Plane	. 376

5.10	Heisen	berg Boxes and Time–Frequency Plane
	5.10.1	Concept of Time-Frequency Atom: Concept
		of Waveform Family
	5.10.2	Energy Density, Probability Distribution
		and Heisenberg Boxes
	5.10.3	Spectrogram, Scalogram and Energy Conservation 381
	5.10.4	Reconstruction Formulas of Signal: Stable
		and Complete Representations
5.11	Wiener	Theory and Time-Frequency Analysis
	5.11.1	Introduction to the Correlogram-Periodogram
		Duality: Similarities and Resemblances Researches 384
	5.11.2	Elements of Wiener Spectral Theory and Extensions 388
5.12	The Co	nstruction of Orthonormal Bases and Riesz Bases
	5.12.1	Signal of Finite Energy 399
	5.12.2	Reminders: Norms and Banach Spaces
	5.12.3	Reminders: Inner Products and Hilbert Spaces
	5.12.4	Orthonormal Basis 400
	5.12.5	Riesz Basis, Dual Family and Biorthogonality
	5.12.6	Orthogonal Projection
	5.12.7	The Construction of Orthonormal Basis
		and Calculation of the "Detail" Coefficient
		on Dyadic Scale 402
5.13	Concep	ot of Frames
	5.13.1	The Fourier Transform in $L^2(\mathbb{R})$
	5.13.2	Frames
	5.13.3	Tiling of the Time-Frequency Plane by Fourier
		and Wavelets Bases 408
5.14		and Nonlinear Approximations of a Signal
		ection on an Orthonormal Basis
	5.14.1	General Framework of the Linear Approximation
		and Karhunen–Loève Optimal Basis
	5.14.2	Nonlinear Approximation and Adaptive Basis
		Dependent on the Signal: Regularity and Singularity 410
	5.14.3	Donoho and Johnstone Nonlinear Estimation:
		Algorithm with Threshold
	5.14.4	Nonlinear Estimators are More Efficient
		to Minimize the Bayesian Risk: Optimization
		by Minimax
	5.14.5	Approximation by the "Matching Pursuit":
		A General Presentation
-	5.14.6	Comparison of Best Bases and Matching Pursuits 426
5.15	The Mu	Itiresolution Analysis Notion
	5.15.1	(Quadratic) Conjugate Mirror Filter
	5.15.2	Multiresolution Analysis

5.16	Singula	rity and Regularity of a Time Series:
	Self-Sin	nilarities, Multifractals and Wavelets
	5.16.1	Lipschitz Exponent (or Hölder Exponent):
		Measurement of Regularity and Singularity by
		Means of the Hölder Functions $\alpha(t)$
	5.16.2	n Wavelet Vanishing Moments and Multiscale
		Differential Operator of Order n
	5.16.3	Regularity Measures by Wavelets
	5.16.4	Detection of Singularities: The Maxima of the
		Modulus of Wavelet Transform are Associated
		with the Singularities
	5.16.5	Self-Similarities, Wavelets and Fractals
	5.16.6	Spectrum of Singularity: Multifractals, Fractional
		Brownian Motions and Wavelets
5.17	The Co	ntinuous Wavelet Transform
	5.17.1	Application to a Stock Exchange Index: <i>Cac40</i>
5.18	Wigner	-Ville Density: Representation of the Fourier
		velet Atoms in the Time–Frequency Plane
	5.18.1	Cohen's Class Distributions and Kernels
		of Convolution
5.19	Introdu	ction to the Polyspectral Analysis
		Nonlinearities)
	5.19.1	Polyspectral Analysis Definition for Random
		Processes with Zero-Average
	5.19.2	Polyspectra and Nonlinearities
5.20		actral and Wavelet Bicoherences
	5.20.1	A New Tool of Turbulence Analysis: Wavelet
		Bicoherence
	5.20.2	Compared Bicoherences: Fourier and Wavelet
5.21		ents in Favor of Wavelet Analysis Compared
		er Analysis
	5.21.1	Signal Deformation by Diffusion of Peaks,
	0.2	Discontinuities and Errors in the Fourier Transform 475
	5.21.2	Wavelets are Better Adapted to the Signal
		by Respecting Discontinuities and Peaks, Because
		they Identify the Variations
	5.21.3	Wavelets are Adapted to Non-Stationary Signals 477
	5.21.4	Signal Energy is Constant in the Wavelet Transform 477
	5.21.5	Wavelets Facilitate the Signal "Denoizing"
	5.21.6	Wavelets are Less Selective in Frequency
	0.21.0	than the Fourier Transform
	5.21.7	The Hybrid Transformations Allow an Optimal
		Adaptation to Transitory Complex Signals
		required to remotely complex organis

6	The A	Atomic D	ecompositions of Signals	479
	6.1	A Hyb	rid Transformation: Evolution of the "Matching	
		Pursuit	" Towards the Mallat and Zhang Version	479
		6.1.1	Construction of Sinusoid and Wavelet Packets	
		6.1.2	Reminders About the Time-Frequency Atoms	483
		6.1.3	Reminders About the Matching Pursuit	484
		6.1.4	Improvement of the Algorithm	486
		6.1.5	Mallat and Zhang Version of Matching Pursuit	
			with Dictionaries of Time–Frequency Atoms g_{γ}	487
	6.2 App	Applic	ations of the Different Versions of the "Matching	
		Pursuit	" to a Stock-Exchange Index: Cac40	495
		6.2.1	Matching Pursuit: Atomic Decomposition	
			with Fourier Dictionary	495
		6.2.2	Matching Pursuit: Atomic Decomposition	
			with Wavelet Dictionary	497
		6.2.3	An Application of the Mallat and Zhang	
			"Matching Pursuit" Version: An Adaptive Atomic	
			Decomposition of a Stock-Exchange Index with	
			Dictionaries of Time–Frequency Atoms g_{γ}	499
	6.3	Ramse	y and Zhang Approach of Stock Market Crises	
		by Ma	tching Pursuit with Time-Frequency Atom	
		Dictior	naries: High Intensity Energy Periods	503
		6.3.1	The Dirac Function Would Allow to Distinguish	
			Isolated and Intense Explosions: Internal Shocks	
			and External Shocks	504
	6.4	Comm	ents About Time–Frequency Analysis	505

Part IV Economic Growth, Instability and Nonlinearity

7	Evolution of Economic Growth Models		
	7.1	Growth and Distribution in the Neoclassical Framework	
		7.1.1	Aggregates and National Income
		7.1.2	Neo-Classical Production Function
			and Diminishing Returns
		7.1.3	Conditions of the Optimal Combination
			of the Factors K and L
		7.1.4	Optimal Combination of Factors, and Tendency
			Towards a Zero Profit in the Long Term
		7.1.5	The Ground Rent and the Ricardo Growth Model 517
		7.1.6	The Expansion Path and the Limitation
			of the Nominal National Income Growth
		7.1.7	Stationary Per Capita Income of the Solow Model
			in the Long Term

7.2	Linear	Technical Relations Outside the Neo-Classical			
	Theory	Framework of the Distribution: Von Neumann			
	Model	of Semi-Stationary Growth (1946)			
	7.2.1	Primacy of the Organization of "Technical Processes" 521			
	7.2.2	Presentation of the Von Neumann Model			
	7.2.3	The Optimal Path and the Golden Rule in the Von			
		Neumann Model			
	7.2.4	Comments About Von Neumann and Solow Models 528			
7.3	Stabilit	y, Stationarity and Diminishing Returns			
		Capital: The Solow Model (1956)			
	7.3.1	Diminishing Returns and Stationarity of the Per			
		Capita Product			
	7.3.2	The Reference Model			
	7.3.3	Introduction of the Technological Progress			
		into the Solow Model and Balanced Growth Path 539			
	7.3.4	Evolution of the Solow Model			
		and the Neo-Classical Models			
7.4	Introdu	ction of Externalities, and Instability: Endogenous			
	Growth	1 Theory			
	7.4.1	Interrupted Growth in the Solow Model			
		and Long-Term Stationarity 543			
	7.4.2	Introduction of Positive Externalities			
	7.4.3	Endogenous Growth Without Externality 548			
7.5		ve to the Research by Profit Sharing: The Romer			
		(1986–1990)			
	7.5.1	Basic Components of the Romer Model			
	7.5.2	Imperfect Competition, Externalities and R&D			
		Optimality: The Reconciliation in the Romer Model 553			
	7.5.3	Romer Model and Transfer of Technology			
		Between Countries 555			
7.6		earities and Effect of Economic Policies			
	in the Endogenous Growth Models558				
	7.6.1	AK Model: The Limit Case of Solow Model			
		for $\alpha = 1$			
	7.6.2	Linearities and Endogenous Growth			
	7.6.3	Externalities and AK Models			
	7.6.4	Nonlinearities and Effect of Economic Policies			
		in Endogenous Growth Models: Transitory or			
		Permanent Effects			
7.7		of Instability and Saddle-Point: Optimal Growth			
		of Ramsey without Technological Progress			
	7.7.1	Intertemporal Choices and Utility Function			
	7.7.2	The Production Function			
	7.7.3	Mechanism of Optimization, and Trajectories 566			

7.8	Basin (Basin of Instability and Saddle-Point: Optimal Growth		
		of Cass Koopmans Ramsey with Technological Progress 569		
	7.8.1	Enterprises and Production Function		
	7.8.2	Households and Maximization of the Utility		
		Function Under the Budget Constraint		
	7.8.3	Dynamics and Balanced Growth Path		
	7.8.4	Comments About the Trajectories		
		and Maximization of the Level of Consumption 578		
	7.8.5	Equilibria and Instability of Solutions		
	7.8.6	Endogenous Growth Without Externality,		
		and Saddle Point		
7.9	Day M	odel (1982): Logistic Function, Periodic and Chaotic		
	•	ors		
	7.9.1	The Model		
	7.9.2	From Dynamics of Capital Towards Logistic Function 582		
	7.9.3	Periodic and Chaotic Solutions of the Dynamics of $k \dots 583$		
7.10	Day-L	in Model (1992): Imperfect Information and Strange		
		or		
	7.10.1	Imperfect Information, Price Uncertainty		
		and Adaptive Expectations 584		
	7,10.2	Chaotic Growth and Intertemporal Non-Optimality 586		
7.11	The Ins	The Instability of Stock Markets, and Random Processes:		
	Model	of Portfolio Choice		
	7.11.1	Dynamics of Accumulation of k and m		
	7.11.2	The Solution is a Saddle-Point 590		
7.12	Goodw	in's Cyclical Growth Model 592		
7.13	3 Catastrophe Theory and Kaldor Model			
7.14	Overlap	oping Generations Models: Cycles, Chaos		
	7.14.1	Benhabib–Day (1982) 598		
	7.14.2	Grandmont (1985) 599		
7.15		I Growth Models: Convergence, Cycles, Chaos		
	7.15.1	Boldrin–Woodford (1990) 601		
	7.15.2	Turnpike Theorem (and Anti-Turnpike Theorem) 602		
	7.15.3	Benhabib–Nishimura Optimal Growth Model		
		(1979): Equilibrium Limit Cycle		
7.16	Nonline	earities and Cycle Theory 605		
	7.16.1	Nonlinearities and Chaos Theory		
	7.16.2	Real Business Cycle Theory and Concept of Shock 606		
Ffeat		Den low W. D.		
8.1	Morkot	Random Walk		
0.1	Growth	Efficiency and Random Walk: Stock Market		
	8.1.1	and Economic Growth		
	8.1.2	Stock Exchange: Perfect Competition Market		
	0.1.4	Stock Exchange: Advanced Indicator		
		of Economic Activity		

8

		8.1.3	Indicators of Value Creation
		8.1.4	Corporate Governance: Market Imperfection Factors 613
		8.1.5	Modigliani-Miller Theorem: Neutrality
			of Finance on Market Perfection
		8.1.6	Role of Expectations on Equilibria and Markets:
			Expectation Concepts
		8.1.7	The Lucas Critique of Rational Expectations
			and the Superneutrality of Economic Policies
		8.1.8	Rational Bubbles and Sunspots Models
		8.1.9	Efficiency and Instability of Financial Markets:
			A Non-Probabilisable Universe
		8.1.10	The Question of the Imperfection, Inefficiency
		0.1.10	and Non-Random Walk of Stock Markets
Con	clusion	I	
Pos	tface		
A			
	A.1		s, Metrics, Topological Structures
		A.1.1	Relations and Diffeomorphisms
		A.1.2	Metric Spaces and Topological Spaces
	A.2	PreHilbert, Hilbert and Banach Spaces	
		A.2.1	Normed Spaces
		A.2.2	PreHilbert Spaces
		A.2.3	Banach Spaces and Hilbert Spaces
		A.2.4	Differentiable Operators
		A.2.5	Banach Fixed-Point Theorem
		A.2.6	Differential and Integral Operators
	A.3	Complex	x Number Field, Holomorphic Functions
and Singularities		gularities	
		A.3.1	Complex Number
		A.3.2	Construction of the Field \mathbb{C} of Complex Numbers 661
		A.3.3	Geometrical Representation of Complex Numbers 662
		A.3.4	Operations in the Gauss Complex Plane
		A.3.5	Algebraic Closure of \mathbb{C}
		A.3.6	Alembert–Gauss Theorem
		A.3.7	Exponential, Logarithm in \mathbb{C}
		A.3.8	Others Properties of \mathbb{C} , and Topology Theorem of \mathbb{C} 666
		A.3.9	Riemann Sphere (Compactification)
		A.3.10	Holomorphic Function, Cauchy–Riemann
			Conditions and Harmonic Function
		A.3.11	Singularity of Holomorphic Functions, Laurent
		*	Series and Meromorphic Function

A.4	Surfaces and Manifolds			
	A.4.1	Closed Surfaces, Surfaces with Boundary	673	
	A.4.2	Classification of Closed Surfaces	676	
	A.4.3	Orientability and Topological Invariance	678	
	A.4.4	Connectivity Number	679	
	A.4.5	Riemann Surfaces	679	
	A.4.6	Manifolds and Differentiable Topology	681	
A.5	Topolog	gy	683	
A.6	Geome	try and Axioms	685	
	A.6.1	Absolute Geometry	685	
	A.6.2	Euclidean and Non-Euclidean Metrics	687	
	A.6.3	Affine and Projective Planes	691	
	A.6.4	Projective Metric	693	
	A.6.5	Order and Orientation	693	
A.7	Series E	Expansions	696	
	A.7.1	Taylor Polynomials and Remainders	696	
	A.7.2	Applications to Local Extrema	698	
	A.7.3	Taylor Series	698	
	A.7.4	Analytic Functions	699	
	A.7.5	Binomial Series	. 700	
A.8	Distribu	ution Theory		
	A.8.1	Derivation of Distributions	. 703	
	A.8.2	Multiplication		
	A.8.3	Support of Distributions	703	
	A.8.4	Convolution of Distributions	. 704	
	A.8.5	Applications to Partial Differential Equations		
		with Constant Coefficients		
	A.8.6	Use of Elementary Solutions		
A.9		imation Theory	. 706	
	A.9.1	Best Approximations	. 707	
A.10		lation Theory		
	A.10.1	Lagrange Method	. 709	
	A.10.2	Newton–Gregory method		
	A.10.3	Approximation by Interpolation Polynomials		
A.11		cal Resolution of Equations		
	A.11.1	Simple Iterative Methods		
	A.11.2	Newton-Raphson Method		
	A.11.3	Linear Interpolation Method (Regula Falsi)		
	A.11.4	Horner's Schema	. 712	
	A.11.5	Graeffe Method	. 713	
A.12	Second-	Order Differential Equations	. 713	
	A.12.1	General Resolution of Linear Differential		
		Equations of Second-Order	. 714	
	A.12.2	Resolution of Linear Homogeneous Equations	. 714	
	A.12.3	Particular Solution of a Non-Homogeneous Equation	. 715	

Contents

	A.12.4 Linea	r Differential Equations of Second-Order	
	with	Constant Coefficients	
A.13	Other Reminders		
	A.13.1 Basic	Reminders in Mathematics and Statistics	
Bibliograp	hy		
Index			